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CHAPTER 7
AXIOMS

7.1. Here I formalize the informational approach through a propaedeutic system of logical axioms. The
reasons why I speak of a propaedeutic system will be explained in §8.7.1. Obviously the variables “A”, “h;” et cetera
range over pieces of information.

The axioms are

AX1 IDENTITY if hthen h

AX2 REPLACEMENT if h1 and if hs= hz then h2
AX3 ASSOCIABILITY if h1, and if h2 then h1& hz
AX4 COMMUTABILITY if h1& hz, then ha& h1

AX5 RESTRICTION if h1&hz, then hy

AX6 COHERENCE if h1&~h1, then hz

AX7 COMPLEMENTARINESS  if h1&hz= h1&~h1then h1&~hz= h1

and could be re-proposed in the well known fractional notation where for instance AX2 becomes
A hy =i
f s
et cetera. I preferred “if then” only for minute typographical convenience.

7.1.1. The above axioms draw an idempotent logic (§1.3). In fact

Theorl. If &, then h&h and if h&h, then A.
Proof, By AX1 and AX3, if & then h&h; by AXS, if h&h, then A.

Obviously the theorem of idempotence concerns pieces of information. For instance it states that, if we know
that 2<3, we can infer that 2<3 and 2<3; therefore, since reciprocally (AXS5) if we know that 2<3 and 2<3, we can infer
that 2<3, to know that 2<3 and 2<3 is nothing more and nothing less than to know that 2<3 (Theor4 below).

7.2. Some comments are opportune in order to show that the usual interpretation of symbols satisfies the
admissibility criterion.

7.2.1. AXI1 is obvious: any piece of information can be inferred from its assumption.

7.2.2. AX2 rules the substitution of identity. Indeed “substitution of identity” is a patent oxymoron, because in
the meaning of “substitution” there is a component of diversity quite incompatible with the very meaning of “identity”
(scholasticism taught: si duo idem faciunt, non est idem); this notwithstanding I respect the current terminology.
Anyhow the topic will be better analyzed in Chapter 8.

7.2.2.1. Besides the substitution of identity, current theorizations list Modus Ponens as a further inference rule.
Here, by the definition (6.vi), it is a theorem. In fact

Theor2. If h;and if h;= h;& h,, then h,.
Proof. By AX2 we get hj&h), then, by AX5, hz'
Of course if “A;” and “h,” were variables over sentences,
h1: h[& hg
would be an absurdity.

7.2.3. The admissibility of AX3 follows immediately from the same meaning of “and”, that is from the same
*conjunction® (when referred to pieces of information). The repetition of “if” says just that the two acquirements are
singularly considered.

7.2.4. At first sight a superficial objection might suggest some perplexity about the admissibility of AX4, that
is about the commutative property of conjunction. For instance

(7.1) Ava took a lover and Ava’s husband abandoned her
and
(7.11) Ava’s husband abandoned her and Ava took a lover

are obtained by commutating the same two atomic statements, yet (7.1)) and (7.i1)) adduce two different pieces of
information, otherwise it would be unexplainable why the respective lawyers are quarrelling about (7.1) and (7.1i).
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The reply is immediate: (7.i) and (7.ii) are elliptic formulations suggesting that the consequentiality of the facts
corresponds to the consequentiality of the atomic statements. Indeed, making (7.1) explicit leads to

(7.1i1) Ava took a lover at #; and Ava’s husband abandoned her at 7,
exactly as making (7.ii) explicit leads to
(7.1v) Ava’s husband abandoned her at #;and Ava took a lover at #;

therefore the example, far from confuting AX4, corroborates it (both (7.iii) and (7.iv) are perfectly commutative).

7.2.5. While AX2, AX3 and AX4 do satisfy the admissibility criterion also under the dual interpretation which
reads “&” as a symbol of inclusive disjunction, AX5 does not, so rejecting this dual interpretation. On the contrary
AXS5 legitimates in the most obvious way the usual interpretation of “&”: in fact while a conjunction increases the
information adduced by each conjunct, the inclusive disjunction decreases the information adduced by each disjunct.

7.2.6. AXG6 is nothing but the formalization of the classical Ex absurdo quodlibet. In other words it states that
the conjunction of two opposite pieces of information precludes every possible alternative.

7.2.7. AX7 states that two opposite pieces of information do not intersect. Therefore AX6 and AX7 in
conjunction define exactly the complementary import of *~* which finds in ® its immediate visualization: the shaded
fields of two opposite pieces of information do not leave any virgin sector and do not overlap.

7.3. I recall the definition
(7.v) (h>hz) = (hi& hy=hy)
(§6.6.1); I also recall that under (7.v) /; is an expansion of %, and 4, is a restriction of ;.

7.4. Here I list some theorems involving only conjunctions, that is only AX1, AX2, AX3, AX4 and AXS.

Theor3 hj&hy oh;

Proof. By AX4 hj&hy & hj=h;& hj&h)
By Theorl hj&hj& hy= hj&h)
By (7.v)hj&hy oh;

7.4.1. For the sake of concision the proofs of the theorems below are simply sketched or even omitted (when
quite elementary).

Theor4 Ifh]DhZ and hZDh], then h1= h2
Proof: hj=h;&hy=hy&h;= h).

7.4.1.1. Since (Theorl) if A, then h&h and if h&h, then h, it follows from Theor4

Corollary 4 h&h=h

that is the identity between a piece of information and, so to say, its iteration. Yet we must avoid interpreting such a
conclusion in an abusive way. A little example. Bob looks at the outcome of this die, and sees a six; yet he is
astigmatic, and as such a little doubt remains: a six or a four? He puts on his spectacles and verifies: surely a six. In this
sense someone could object that, since the ‘spectacles-assisted’ acquirement strengthens the first one, Corollary 4 is
violated.

No violation indeed, since the little doubt concerning Bob’s first acquirement forbids its acceptation as an
acquirement. When we accept a piece of information, we assume it as an unobjectionable datum which no further
acquirement can strengthen. That is: here we are theorizing an idempotent logic where no intermediate degree of
knowledge is admitted between *known* and *unknown*.

7.4.2. Some other theorems involving only conjunctions.

Theor5 Ifhj=h), then hjohyand hpoh;
Proof: hj=h;&h = hj&h), ergo h o hy;
hy=hy&hy=hy&hj, ergo hy)o h;j.

Theor6 Ifhj>hyand hpohz, thenh;oh3 (Transitivity)
Proof: h;= hl&hZ, hy=hy&hs3;
hj&hy &hz=hj&h3z=hj&hy=h;
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Theor7 Ifhj>hyand hjoh3, then hjo(hy&hs)

Theor8 If hj&hy= h3, then h3&h;= h3
Proof: h]&hz&h3= h3&h3= h3=h]& hj& h2&h3= h]&h3&h3= h]&h3.

7.4-3. While an implication where
(hj=>hy &~(hy=>hy)
is called “simple implication”, an implication where
(hl1oh2) & (h2>hli)
is called “reciprocal implication”. Then Theor4 and Theor5 say that identity is nothing but a reciprocal implication.
Though identity is a relation linking every category of referents, Theor4 and Theor5 are not so ambitious as to
state that any identity can always be interpreted as a reciprocal implication. Since such theorems concern pieces of
information, they simply state that, when we are dealing with pieces of information, identity can be conceived as a
reciprocal implication and vice versa.

7.5. Some theorems involving also negations, that is also AX6 and AX7.

Theor9. (h;&~hj) = (hr&~h))
Proof. AXG6: (hj&~h;) Dhy. AX6: (hj&~hj) D>~ hy. Theor7: (hj&~hj) > (hy&~h)).
Reciprocally (hy&~hy) o (hj&~hy). Ergo for Theord (h;&~hj) = (hy&~h)).

Theorl0 If (hj&hy= hj) then (hj&~hy=_1)
Proof.... hp&~hy=_1 ; hj&hy&~hy=_L by AX6; ergo, if (hj&h )= hj), then by substitution & j&~hy=_L.

Theorll If (h;&hy=_1) then (hj&~hy=h;)

Proof. AX7 and definition of incoherence.

Theorl2 Ifh;>oh,then ~hy o~h;

(Modus Tollens).
Proof  Theorl0: hj&~hy=_L. AX4: ~hy&h;=_L. Theorll: ~hy&~h;=~h)>.

Theorl3 h&~~h=nh
Proof By definition 4 &~h =_,. Theorll: h &~~h = h.

Theorl4 h &~~h = ~~h
Proof  h=~h;. Theorl3: h; >~~h;; Modus Tollens ~~~h; >~h;; ~~h >h.

Theorl5 h =~~h

Theorl6 Ifhj>hyand h3o~ h), then h3 o~ hy
Corollary 16 Ifhjohyand h3o~ hy, then hyo>~ h3

7.6. The theorems of the propositional calculus can be easily proved. For instance (Kleene 1974, §23)

Implication (introduction): ((h;&hy)>h3) o (hjo(~ (hy&~h3))
Proof. (hj&hy)&h3=hj&h); (hj&hy)& ~h3= hj&(hy&~h3)=LTheorll: hj&(~(hy&~h3)=hj.

Modus tollendo ponens. (~ (~hj&~hy)& ~hj)>h).
Proof. (~ (~hj&~hp)& ~h )& ~hy=~ (~h j&~h)) &(~h&~ip)= L.
and so on.

7.6.1. The reductio ad absurdum is nothing but a technique derivable from the axioms. In fact, given a statute
k, if h is such that k&h=_, by Theorl1 k&~h=k, therefore ~h is implied by the statute.

7.7. The definition
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(7.vi) (hi=h>= h3) = (h/=h; & h;)
introduces the symbol “-“ for the operation I call “ablation”.

The second member of (7.vi) tells us that an ablation is defined only where the minuend %; implies the
subtrahend #,: in fact if 4;=h, & h;, since hy & hz=h, & h,& h;, then h;&h, = h;. And actually we cannot cancel from a
statute a piece of information which does not belong to the same statute.

7.7.1. In spite of the manifest similarities connecting *sum* with *conjunction* and *subtraction* with
*ablation®, while in mathematics (n;-n;) = (n;+(-n,) and therefore a subtraction can be conceived as the sum of a
negative quantity, in the informational logic, evidently, (h;-h,) = (h;&(~h;)) does not hold, since cancelling a piece of
information is far from stating its opposite (forgetting that Bob loves Ava is far from believing that Bob does not love
Ava). Therefore the ablation cannot be conceived as the conjunction of a negative piece of information.

In our minute practice ablations are mainly involved in situations where an absolutely trustworthy new
acquirement incompatible with our previous statute constrains us to correct the same statute, therefore to reject (to
ablate) some previously accepted pieces of information.

This topic will be deepened in due course. Here I only emphasize that conjoining pieces of information
continues being an increasing operation (Theor3).

7.8. The three axioms for x(§6.4) are

AX8  POSITIVITY
If (~ (k&h =_1)) then (1u(h)>0)
AX9  OPPOSITION

,uk(h) + ;uk(Nh) = ,Ukﬂf)
AX10 CONDIZIONALIZATION

ti(hi& hy) = thani(ho)
(AX10 is so called for it is the father of the Principle of Condizionalization).

Since a measure is a number, the relations among measures are relations among numbers. This entails the
presence of mathematical symbols such as “>", “0”, “+”, and also of other commonplace ones such as “/” for the
division et cetera. As far as I know, the theories of probability omit the axiomatization of mathematics, and I follow this
procedure.

7.8.1. The symbol “-* occurring below does not mean ablation; it does mean subtraction. This notwithstanding
such a symbol is not a homonymy bearer because the context overcomes any ambiguity (where “-” connects numbers, it
expresses subtraction, where “-“ connects pieces of information, it expresses ablation).

7.8.2. Since g4 (h) is represented in ® by the k&h-virgin field, the admissibility of the three axioms for u is
diagrammatically immediate. For instance AXS8 states that if the k&#/-shaded field is not the whole circle, the respective
virgin field is not null. Anyhow the diagrammatic interpretation of some theorems is proposed below.

7.9. Contrary to the already listed theorems, indicated by “Theor”, the u-theorems (that is the theorems
depending also on the non-logical axioms AX8, AX9 and AX10 will be indicated by “THEOR” in order to facilitate
immediate references. The formal discriminating factor between Theors and THEORS, obviously, is the absence or
presence of “z/”.

THEORI1 py(k&h) = w(h) = phran(k&h)= than(h)
Proof AX10: wyk&h) = phen(h)= ()
and so on.
Of course a derivation like
(W)= tten(h) = tren(kedeh) = 1, (k&ch)= 11,(k)
is illegitimate because presupposing that the sufficiency condition (§6.4.2) is satisfied by (%) does not imply that such
a condition is satisfied by (k) too (and actually, in general, it is not).

THEOR2 Lu(~k) = 0.
Proof. AX9: (k) + wu(~k) = (k).
THEOR3 Hreni(h2)= thaena(hy).
THEOR4

p(hj&hy) + (hj&~hy) = w(hp).
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Proof AX9 and THEORI:

Hrani(ho) + theni(~h) = thani(k&hy) ) = p(hyp).

Equivalent formulation. THEOR4’

t(hp&hy) = w(hy) - trani(~h)

THEOR4 shows that, given a £, increasing a hypothesis decreases its k-measure.

THEORS H(h&~h) =0
Proof THEOR4 and Theorl5:
t(h&~h) = py(h) - pian(~~h) =pu(h) - pu(h).
Equivalent formulations: THEORS’ H(L)=0
THEORS5” Hign(~h) = 0.
Diagrammatic interpretation. Since the representation of two opposite pieces of information shades the whole
circle, its virgin field, quite independently of the statute, is null.

THEORSG (0)=1ak)

Proof O=~1. AX9: u(O)+ (L) = (k). THEORS’: p(L)=0.
THEOR7 If (1y(h)=0) then (k&h=_L).

Proof Modus Tollens on AXS.

THEORS If (k&h=_1) then (14(h)=0).

Until now k=_ has only been a particular case, since THEORS shows that an incoherent statute entails a null measure
for any hypothesis. In §7.13 this point will be deepened.

THEOR9 If (koh) then (1w (h)=pu(k)).
Proof  Protasis: k&h=~k. Substitution: gy (k&h) = (k). THEORI1: gy(k&h) = 1y (h)

Diagrammatic interpretation: if the shaded field of & includes the whole shaded field of 4, the virgin field of
k&h is the virgin field of &

Proof AXS8 and THEORS’ as for 0 < z4(h); therefore (AX9) wy(h) < (k)
Diagrammatic interpretation: the k&h-virgin field cannot be greater than the A—virgin field.

THEORI1 w(h &) < pu(h).

THEORI12 If py(h j &ho)= pu(h ) then py(k&~ (hj&~h))) = py(k).
Proof  If px(hj&hy)=pk(hj) then pg(hj&~hy)=0by THEORA4, ergo wy(~(hj&—hy))=uy (k) by AX9.
THEOR12 is the g—correspondent of the Deduction Theorem.

THEOR13 If (uu(h) = (k) then (ko h))
Proof AXO: gy(~h)=0. THEORT7: k&~h=_. Theorll, k&h =k.

THEOR14 (~(k>h)) > ((h) < (k).
Proof  Modus Tollens on THEOR13, and THEORSY.

Diagrammatical interpretation. If the representation of /4 shades some k-virgin sector, the k&h-virgin field is
less than the k-virgin one.

7.10. The argument proposed in §6.10 can be re-proposed here. Since (AX9)

(7.vii) (~h) = (k) - 1u(h)
and (THEOR4")
(7.viii) t(hp&hp) = w(hp) - thani(~h)

give us the measures of negations and conjunctions, and since any propositional connective can be formulated in terms
of negations and conjunctions, we can derive from (7.vii) and (7.viii) the measure of any piece of information adduced
by a proper formula of the propositional calculus. Let me enter into some (useful) detail.

7.10.1. The three disjunctions informally introduced in §6.10 can be formally introduced by
(ix) (hpvhov...vhy) = (~(~h;&~hr&...&~hy))

for the inclusive disjunction OR, by
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(hyl bl hy) = ...
= (~(h&hy) & ~(hj&h3) & ... & ~(hj&h,) & & ~(hp&h3) &..& ~(h&h,) & ... & ~(h,,_1&h,,))
for the exclusive disjunction NAND, and by
(hp¥ hod B =((h vhov..vhy) & (B hol.| b))
for the partitive disjunction XOR. The last disjunction is called “partitive” because an n-uple %;.... &, constitutes a
proper partition of the k~compatible eventualities iff the two conditions
(k&~hj&~hr&....&~hy,) =1
(stating that /... hy, are inclusively disjoined) and
(~ (hj= hj)) > (k&hi&hj=_£)
(stating that /... hy, are exclusively disjoined) are satisfied.

Accordingly “v’could almost be read as a synthesis of “v”” and

64|”.
7.10.2. As for the measures of the disjunctions I limit myself to the following theorems.

THEORI5 t(hpvihy) = pu(hp) + ) - p(hp&hy)
Proof By (7.vii) and AX9,
H(hvhp) =p(~(~h 1&~h2)) = (k) - pi(~h 1 &~hy)
= (k) - th(~h 1) + thg-ni(~~hy)
= pu(hp) + pu(hy&~hyp)
=t (hp) + pu(h)) - p(hy&hy)

THEOR16 w(h| ho)= m(~h )+ thani(~h2)
Proof  gu(hj| hp)= w(~(h;& hy) = w(k)- pu(h;&hy). Then THEOR4 and AX9.

THEOR17 h i ha) = wh&~hy) + whr&~hy)
Proof pulh ¥+ ho) = pl(hpvig) & (hlh) = u(hvh) - thagiay(~ hyl h)
= th(hpvhy) - thaminy(hj &ho)
= ,Uk(hl) + tiaen(~hp) - tremi M) + themineni(Th)
= (hp) + phan2(~hp) - wh ( &(hpvhy)) + thramimeni(~h)
But, since hjo(hpv hy), pthj&hyvhy)) = pu(hy) and themrmzyen(~hp) = thani(~hy),
ergo u(h ¥ ho) = than(~hp) +han(~h2) =t (hj&~hp) + pu(hr&~hyp)

Equivalent formulation:
THEORI7" u(hjdhy) = pu(h)-1u(h 1 &ho)+p(ho)- w(h &)

THEORI18 h b hod N hy) = we(h&~hr&...&~h,) +
+ t(hy&~hj&...&~hy) + ..+
+ tu(hy&~h &~hr&.... &~h,_ 1)

THEOR19 If (k=(hj¥ ho...4 hy,)), then
then px(hjd hovbed hy) = whp) + w(hy) + ... + w(hy,) (Addictiveness)

Proof. If hj... hy, are a proper partition of k

hj = (~hy&~h3&...&~hy)

hy = (~hj&~h3&...&hy)
and so on, therefore

il &~hy&...&~hy) = (h])

(hy&~hj&...&~hy) + 1y(hy)
and so on; the addictiveness follows from THEOR18.

7.10.3. A dilemma is a partitive disjunction between two (opposite) alternatives. Therefore, with reference to a
dilemma (n=2, hy=~h7)

(7x) pulhviy) = sy hy) = whpdhy) = puihy) + puihy) = (k)
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follows from THEOR15, THEOR 16 and THEOR17. Indeed (7.x) can shed light upon some poor uses of the various
disjunctions. An example:
ifhjvhyv..vhy, and h; entails ~hj for all i, then...

is a habitual expression meaning what can be advantageously meant by
Ifh;dhyv...dhy, then...

since the condition that /; entails ~hj for all i= is exactly the condition that the » inclusively disjoined pieces of

information are also exclusively disjoined (an example in the formulation of THEOR33 below).

7.11.  The definition
(7.x1) (hy—hz) = ~(h;&~ hy)
introduces the (obviously non-primitive) symbol “—” for the connections I call “pseudo-hypothetics” (pseudo-
hypothetics will be exhaustively analyzed in Chapter 14, specifically destined to conditionals). And

THEOR20 thi—h2) = py(~hy) + pi(h & hy)
(whose proof follows plainly from (7.xi)) gives us the measure of pseudo-hypothetics.

7.12. In §6.3.3 I affirmed that g is strictly linked to the notion Waismann, Carnap and followers call
“measure”. In fact by
(7.xii) P(hlk) = p(h)/ pu(k)
I define the probability of # given k. The main difference is that, contrary to them, conceiving the measure as an
absolute or unconditional quantity, in my opinion, is an unsustainable thesis (§15.1.2).

Of course the real number that g assigns to a / as to a k° depends also on the unity we choose for « ; I will deal
with this marginal aspect in §7.15.

7.13. On the grounds of (7.xii) ~(k=_) becomes a strict condition in order to avoid z4(k)=0, that is a null
denominator. Informally I remark that actually the same notion of probability would be senseless when referred to an
incoherent statute.

Although the main stream of the contemporary orthodoxy starts from a monadic (absolute, unconditional)
probability and (either by a definition or by an axiom) introduces the dyadic (relative, conditional) probability as a ratio
between two monadic ones, in my opinion no monadic probability can exist, since the probability of a hypothesis
depends intrinsically on the statute the same hypothesis is referred to. And the same (7.xii) makes evident such a claim.

Yet I am far from criticizing the distinction between prior and posterior probabilities. Such a distinction is a
correct and essential achievement focusing on the variations determined upon the respective probabilistic values by
increments of information. I am claiming that the same notion of an absolute probability is even more insensate than the
already criticized notion of an absolute measure, because P would result dyadic even if 4 were monadic. The trap,
generally speaking, is that while an ‘unconditional’ probability deals with only one statute (the prior), a ‘conditional’
probability deals with two (the prior and the posterior); nevertheless this evident difference must be not mistaken for an
untenable difference of valences. In both cases the function concerns two variables (hypothesis and statute), and only in
the latter must two different values of the second variable be accounted for. Thus a sound formalization must always
deal with a dyadic function P(h|k) and recognize that there are probability problems concerning single values of such a
function, and probability problems concerning the two values corresponding to the prior and to the posterior statute
(prior and posterior as for the increment of information, obviously). Symbolically: there are probability problems

concerning
(7 .xiii) P(h|k°)
and probability problems concerning the relation between

P(h|k°&k’)
and (7.xiii).

7.13.1. Moreover, a purely dimensional consideration suggests that to define the conditional probability as a
ratio between two absolute probabilities is a rather arrogant procedure. Its arrogance does not regard the legitimacy of
defining the values of a dyadic function as a ratio between the values of two monadic functions; it does regard the
legitimacy of identifying the thus defined dyadic function with the definiens one. I intend that while a definition like

B(x.y) = A(x)/A(y)
is a formally unexceptionable procedure, a definition like

A(x.y) = AX)/A(y)
is at the very least an insidious one. A minute example. If 4(x) is a monadic function assigning to every person x his/her
wealth (computed, say, in US-dollars), the ratio 4(x)/A(y) defines a new dyadic function whose values are no longer
US-dollars, but pure numbers (for instance: since x is three times richer than y, the ratio between the wealth of x and the
wealth of y is 3); therefore it would not be correct to use the same “A4” to indicate this new function too. Of course the
values of both conditional and unconditional probabilities are pure numbers, but this particularity might be only the
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mask of a logical abuse: in fact a probability value and a ratio between two probability values continue being two
heterogeneous entities, and this heterogeneity cannot at all mirror the real situation, as “probability” keeps a common
meaning both in its “‘unconditional’ and in its ‘conditional’ applications.

7.13.2. Perhaps someone might be tempted to object that the notion of monadic probability is not at all
insensate since, for instance, when we roll a just purchased die, 1/6 is the absolute value of each outcome.

The reply is easy. This value is not absolute, it actually depends on the cognitive endowment implicitly
transmitted by “(purchased) die”, since statistical elements suggest us to interpret the word as “perfectly balanced
cube”. In fact, almost in their totality, the dice on sale are perfectly balanced cubes. But if the die has been purchased
on line at www.Falsaria.com, renowned firm specialized in the construction of deceitful dice, the probability of the
various outcomes can be assigned only on the ground of a statute partitioning the space of possibilities in some non-
uniform way. So 1/6 is only the conditional probability relative to a statistically privileged statute.

Dissembling the intrinsic relational nature of a quantity by implicit assumptions is an unsound yet frequent
habit. For instance I am reading that the distance of Proxima Centauri is 4.2 light-years, but for sure my perfect
understanding does not entail that the distance is a monadic notion, it simply means that it is a dyadic notion whose
second term (our planet) is tacitly understood. And actually such elliptic ways of speaking are only fully legitimated
where the context clearly privileges the second term.

7.14. The above considerations show that a Kolmogorov-style axiomatization is not acceptable; in fact
- it proposes the probability as a primitive notion
- it starts from a monadic absolute probability
- it grounds upon a set-theoretic approach whose exasperated extensionality and homonymy-blindness are quite unfit to
account for our very gnosiology, often led by intensional processes.

7.15. As for the unity of measure,
(7.xiv) i (k)=1
is the explicit choice complying with the implicit assumptions of the canonical approaches to the measure function. But
I am afraid that (7.xiv) also represents the worst choice: in fact, under it, the same number expresses both z4(h) and
P(h|k), a coincidence that seems to me an awkward help to possible mistakes between two quite distinct quantities.
Hajek (2003, §1) claims that the non-negativity and normalization axioms here resumed in
(7.xv) 0 <Phlk) <1
are largely matter of convention. 1 disagree: what is largely matter of convention is the choice of the g-unit, but (7.xii)
shows that this choice is irrelevant on the P-range, which always will respect (7.xv). In fact, while both z4(h)<0 and
Hi(h)> (k) are incoherent values, both 4 (h)=0 and a gy (h)=gy(k) are exactly the coherent values accounting for the
two border cases (of a /4 respectively k-incompatible and k-implied).

7.16. The well known probability theorems are derivable by the simple application of (7.xii) to the respective
axioms and theorems for g In particular

THEOR21 Phlk) + P(~hlk) = 1
follows directly from AX9,

THEOR22 0<P(h|k)<1
follows directly from THEORY,

THEOR23 If hy&hy=_L then P(hjv hjlk)=P(hj|\k)+P(hslk)
follows directly from THEOR15.

Finally, in order to adequate my formulae to the current ones, let me use “e” as a new variable ranging over
‘evidences’, that is on acquirements increasing a basic statute k°):

THEOR24 Ph|k°&e) = P(h;&el|k®) / P(e|k°)
Proof. To substitute k with k°&e in (7.xii), to divide numerator and denominator by z4-(k°) and to simplify.

These four theorems express in dyadic notation the four axioms upon which the usual theories are normally
based (Howson and Urbach 2006, §2a); thence the usual theorems could be considered as already proved. Yet I carried
out the task of deriving them again not only because of the new dyadic notation, but also because of the formal
compromises affecting some current proofs. For example

AXIOM P(t)=1 iftis alogical truth

THEOREM  P(1)=0

Proof ~_/is a logical truth, hence...
(ibidem, §2.b, (6)) seems to me a rather rough argument. No doubt that ~_/ is a logical truth, but this means only that a
theorization entailing such a conclusion is admissible. A formal proof must start from some axiomatic formula and
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must transform it into the theoremic one with only the help of the inference rule(s); as such, maintaining the example,
no proof can appeal to the notion of logical truth before its formal definition within the system, and no expression can
be assumed as a logical truth before its formal derivation.

7.16.1. Other useful probability theorems are

THEOR25 P(hj&hylk°&e) = P(hj|k°&e)P(hy|k°&e&h )

Proof  P(h;& hylk°&e) = phpogelh j&h)) / thoge(k°&e)
= (theselh ] &h ) teaelh ) (Uioselh )/ phesc(k°&e))
= (tegeani(h))/ theseani(k°&e&h ) (tyese(h 1)/ these(k°&e))
= P(hj|k°&e)P(hy|k°&ekh )

COROLLARY 25 P(h&hylk) = P(hylk)P(hslk& h )

THEOR26  P(hyvhalk) = P(hglk) + P(h3lk) — P((h 1 &h )lk)
Proof THEOR1S5 and (7.xii)

THEOR27 If (k=(h ;¥ hov... ¥ b)) then P(hyidhov.. b hylk) = P(hjlk) + P(holk) +...+ P(h,|k) = 1
Proof THEOR19 and (7.xii).

THEOR28
If (~ (k&hj=1) & (hjD h)) & p(h)< py(k)) then
then P(h|k&hy)>P(h k)
Proof AXG: fu(h )>0; Plhg\k&hp)= phao(hy) / thana(kch) = ufh &h )/ sh) =
= w(h )/ pn(hp) > pu(h )/ (k).
THEOR?2S is a milestone along the way to inductive inference, since it states that if a coherent /4, entails a consequence
h) not k-entailed then the acquirement of /) increases the probability of (validates) /; given k.

THEOR29
If (P(hj&hslk)=1), then (P(h;|k)=1)
Proof From THEOR26 and THEOR22.

THEOR30
If (P(h 1|k)=0), then (P(h ;&h|k)=0)

THEOR31
(1ek)= 2} pe) > (teaelk°&e)= 5 teaelly))
(a proper partition of £° is also a proper partition of k°&e)

Proof From THEOR19 (k° = h ;¥ hpv. ¥ hyy) 5 (e(k°)= % we(hy)
THEOR32 (k°=h;dhyd. N hy) 5 (ZP(hjlk°&e)=1)
THEOR33

(k°=h;dhyd. b hy,) >

S (P(hjlk°&e) = ((POHKIP(elk°&hy) / (S(P(h,{k*)P(elk°&h;)
(THEOR33 is Bayes’s Theorem in its complete formulation).



