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CHAPTER 7 

AXIOMS 

 

 

 

 7.1.  Here I formalize the informational approach through a propaedeutic system of logical axioms. The 

reasons why I speak of a propaedeutic system will be explained in §8.7.1. Obviously the variables “h”, “h1” et cetera 

range over pieces of information. 

The axioms are 

 
AX1 IDENTITY if h then h 

AX2 REPLACEMENT if h1 and if h1= h2  then h2 

AX3 ASSOCIABILITY if h1, and if h2 then h1& h2 

AX4 COMMUTABILITY if h1& h2, then h2& h1 

AX5 RESTRICTION if h1&h2, then h1 

AX6 COHERENCE if h1&∼h1, then h2 

AX7 COMPLEMENTARINESS  if h1&h2= h1&∼h1 then h1&~h2= h1  
 

and could be re-proposed in the well known fractional notation where for instance AX2 becomes 

 
et cetera. I preferred “if then” only for minute typographical convenience. 
 

 7.1.1.  The above axioms draw an idempotent logic (§1.3). In fact 

 

Theor1. If h, then h&h and if h&h, then h. 

Proof, By AX1 and AX3, if h then h&h; by AX5, if h&h, then h.  

 Obviously the theorem of idempotence concerns pieces of information. For instance it states that, if we know 

that 2<3, we can infer that 2<3 and 2<3; therefore, since reciprocally (AX5) if we know that 2<3 and 2<3, we can infer 

that 2<3, to know that 2<3 and 2<3 is nothing more and nothing less than to know that 2<3 (Theor4 below). 

 

 7.2.  Some comments are opportune in order to show that the usual interpretation of symbols satisfies the 

admissibility criterion.  

 

 7.2.1.  AX1 is obvious: any piece of information can be inferred from its assumption. 

 

7.2.2.  AX2 rules the substitution of identity. Indeed “substitution of identity” is a patent oxymoron, because in 

the meaning of “substitution” there is a component of diversity quite incompatible with the very meaning of “identity” 

(scholasticism taught: si duo idem faciunt, non est idem); this notwithstanding I respect the current terminology. 

Anyhow the topic will be better analyzed in Chapter 8. 

 

 7.2.2.1.  Besides the substitution of identity, current theorizations list Modus Ponens as a further inference rule. 

Here, by the definition (6.vi), it is a theorem. In fact  

 

Theor2. If  h1 and if h1 =  h1& h2, then h2. 

Proof. By AX2 we get h1&h2, then, by AX5, h
2
. 

 Of course if “h1” and “h2” were variables over sentences, 

  h1= h1& h2 

would be an absurdity. 

 

 7.2.3.  The admissibility of AX3 follows immediately from the same meaning of “and”, that is from the same 

*conjunction* (when referred to pieces of information). The repetition of “if” says just that the two acquirements are 

singularly considered. 

 

 7.2.4. At first sight a superficial objection might suggest some perplexity about the admissibility of AX4, that 

is about the commutative property of conjunction. For instance 

(7.i)  Ava took a lover and Ava’s husband abandoned her 

and 

(7.ii)  Ava’s husband abandoned her and Ava took a lover 

are obtained by commutating the same two atomic statements, yet (7.i) and (7.ii) adduce two different pieces of 

information, otherwise it would be unexplainable why the respective lawyers are quarrelling about (7.i) and (7.ii).  
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 The reply is immediate: (7.i) and (7.ii) are elliptic formulations suggesting that the consequentiality of the facts 

corresponds to the consequentiality of the atomic statements. Indeed, making (7.i) explicit leads to 

(7.iii)  Ava took a lover at t1 and Ava’s husband abandoned her at t2 

exactly as making (7.ii) explicit leads to  

(7.iv)  Ava’s husband abandoned her at t2 and Ava took a lover at t3 

therefore the example, far from confuting AX4, corroborates it (both (7.iii) and (7.iv) are perfectly commutative). 

 

 7.2.5.  While AX2, AX3 and AX4 do satisfy the admissibility criterion also under the dual interpretation which 

reads “&” as a symbol of inclusive disjunction, AX5 does not, so rejecting this dual interpretation. On the contrary 

AX5 legitimates in the most obvious way the usual interpretation of “&”: in fact while a conjunction increases the 

information adduced by each conjunct, the inclusive disjunction decreases the information adduced by each disjunct.  

 

 7.2.6.  AX6 is nothing but the formalization of the classical Ex absurdo quodlibet. In other words it states that 

the conjunction of two opposite pieces of information precludes every possible alternative.  

 

 7.2.7.  AX7 states that two opposite pieces of information do not intersect. Therefore AX6 and AX7 in 

conjunction define exactly the complementary import of *∼* which finds in  its immediate visualization: the shaded 

fields of two opposite pieces of information do not leave any virgin sector and do not overlap.  

 

 7.3.  I recall the definition 

(7.v)  (h1⊃h2) = (h1& h2= h1) 

(§6.6.1); I also recall that under (7.v) h1 is an expansion of h2 and h2 is a restriction of h1.  

 

 7.4.  Here I list some theorems involving only conjunctions, that is only AX1, AX2, AX3, AX4 and AX5.  

 

Theor3 h1&h2 ⊃ h1 

Proof. By AX4  h1&h2 & h1= h1& h1&h2  

 By Theor1 h1&h1& h2=  h1&h2  

By (7.v) h1&h2 ⊃ h1 

 

 7.4.1.  For the sake of concision the proofs of the theorems below are simply sketched or even omitted (when 

quite elementary). 

 

Theor4 If h1⊃ h2 and h2⊃ h1, then h1= h2  

Proof:  h1=h1&h2=h2&h1= h2.  

 

 7.4.1.1.  Since (Theor1) if h, then h&h and  if h&h, then h, it follows from Theor4 

 

Corollary 4 h&h = h 

that is the identity between a piece of information and, so to say, its iteration. Yet we must avoid interpreting such a 

conclusion in an abusive way. A little example. Bob looks at the outcome of this die, and sees a six; yet he is 

astigmatic, and as such a little doubt remains: a six or a four? He puts on his spectacles and verifies: surely a six. In this 

sense someone could object that, since the ‘spectacles-assisted’ acquirement strengthens the first one, Corollary 4 is 

violated. 

 No violation indeed, since the little doubt concerning Bob’s first acquirement forbids its acceptation as an 

acquirement. When we accept a piece of information, we assume it as an unobjectionable datum which no further 

acquirement can strengthen. That is: here we are theorizing an idempotent logic where no intermediate degree of 

knowledge is admitted between *known* and *unknown*. 

 

 7.4.2.  Some other theorems involving only conjunctions. 

 

Theor5  If h1= h2, then h1⊃ h2 and h2⊃ h1 

Proof: h1= h1&h1= h1&h2, ergo h1⊃ h2;  

h2= h2&h2= h2&h1, ergo h2⊃ h1. 

 

Theor6   If h1⊃ h2 and h2⊃ h3, then h1⊃ h3  (Transitivity) 

Proof: h1= h1&h2, h2= h2&h3;  

h1&h2 &h3= h1&h3= h1&h2 = h1 
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Theor7   If h1⊃ h2 and h1⊃ h3, then h1⊃(h2&h3) 

 

Theor8   If h1&h2= h3, then h3&h1= h3 

Proof: h1&h2&h3= h3&h3= h3=h1& h1& h2&h3= h1&h3&h3= h1&h3. 

 

 7.4-3.  While an implication where 

   (h1⊃ h2) & ~( h2⊃ h1) 

is called “simple implication”, an implication where 

  (h1⊃ h2) & (h2⊃ h1) 

is called “reciprocal implication”. Then Theor4 and Theor5 say that identity is nothing but a reciprocal implication. 

 Though identity is a relation linking every category of referents, Theor4 and Theor5 are not so ambitious as to 

state that any identity can always be interpreted as a reciprocal implication. Since such theorems concern pieces of 

information, they simply state that, when we are dealing with pieces of information, identity can be conceived as a 

reciprocal implication and vice versa. 

 

 7.5.  Some theorems involving also negations, that is also AX6 and AX7. 

 

Theor9.   (h1&~h1) = ( h2&~h2) 

Proof.   AX6: (h1&~h1) ⊃ h2. AX6: (h1&~h1) ⊃ ~ h2. Theor7: (h1&~h1) ⊃ (h2&~h2). 

 Reciprocally (h2&~h2) ⊃ (h1&~h1). Ergo for Theor4 (h1&~h1) = (h2&~h2). 

 

Theor10    If (h1&h2= h1) then (h1&~h2=⊥) 

Proof.... h2&~h2=⊥ ; h1&h2&~h2=⊥ by AX6; ergo, if (h1&h2= h1), then by substitution h1&~h2=⊥. 

 

Theor11   If (h1&h2=⊥) then (h1&~h2= h1) 

Proof.   AX7 and definition of incoherence. 

 

Theor12    If h1⊃ h2 then ~h2 ⊃ ~h1 

 (Modus Tollens). 

Proof     Theor10: h1&~h2=⊥. AX4: ~h2&h1=⊥. Theor11: ~h2&~h1=~h2. 

 

Theor13    h&~~h = h 

Proof By definition h &~h =⊥. Theor11: h &~~h = h. 

 

Theor14  h &~~h = ~~h 

Proof h=~h1.. Theor13: h1 ⊃ ~~h1; Modus Tollens ~~~h1 ⊃~h1; ~~h ⊃h. 

 

Theor15    h =~~h 

 

Theor16    If h1⊃ h2 and h3⊃~ h2, then h3⊃~ h1 

Corollary 16   If h1⊃ h2 and h3⊃~ h2, then h1⊃~ h3 

 

 7.6.  The theorems of the propositional calculus can be easily proved. For instance (Kleene 1974, §23) 

 

Implication (introduction): ((h1&h2)⊃ h3) ⊃ (h1⊃(~ (h2&~h3)) 

Proof.    (h1&h2)&h3= h1&h2; (h1&h2)& ~h3= h1&(h2&~h3)=⊥.Theor11: h1&(~( h2&~h3)= h1. 

 

Modus tollendo ponens.  (~ (~h1&~h2)& ~h1)⊃ h2. 

Proof. (~ (~h1&~h2)& ~h1)& ~h2=~ (~h1&~h2)&( ~h1&~i2)= ⊥. 

and so on. 

 

 7.6.1.  The reductio ad absurdum is nothing but a technique derivable from the axioms. In fact, given a statute 

k, if h is such that k&h=⊥, by Theor11 k&∼h=k, therefore ∼h is implied by the statute. 

 

 7.7.  The definition 
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(7.vi)  (h1-h2 = h3) = (h1=h2 & h3) 

introduces the symbol “-“ for the operation I call “ablation”.  

 The second member of (7.vi) tells us that an ablation is defined only where the minuend h1 implies the 

subtrahend h2: in fact if h1=h2 & h3, since h2 & h3=h2 & h2& h3, then h1&h2 = h1. And actually we cannot cancel from a 

statute a piece of information which does not belong to the same statute.  

 

7.7.1.  In spite of the manifest similarities connecting *sum* with *conjunction* and *subtraction* with 

*ablation*, while in mathematics (n1-n2) = (n1+(-n2) and therefore a subtraction can be conceived as the sum of a 

negative quantity, in the informational logic, evidently, (h1-h2) = (h1&(∼h2)) does not hold, since cancelling a piece of 

information is far from stating its opposite (forgetting that Bob loves Ava is far from believing that Bob does not love 

Ava). Therefore the ablation cannot be conceived as the conjunction of a negative piece of information.  

 In our minute practice ablations are mainly involved in situations where an absolutely trustworthy new 

acquirement incompatible with our previous statute constrains us to correct the same statute, therefore to reject (to 

ablate) some previously accepted pieces of information. 

 This topic will be deepened in due course. Here I only emphasize that conjoining pieces of information 

continues being an increasing operation (Theor3). 

 

7.8.  The three axioms for µ (§6.4) are 

 

AX8 POSITIVITY 

If (~ (k&h =⊥)) then (µk(h)>0) 

AX9 OPPOSITION 

µk(h) + µk(~h) = µk(k) 

AX10 CONDIZIONALIZATION 

µk(h1& h2) = µk&h1(h2)  

(AX10 is so called for it is the father of the Principle of Condizionalization). 

 

 Since a measure is a number, the relations among measures are relations among numbers. This entails the 

presence of mathematical symbols such as “>”, “0”, “+”, and also of other commonplace ones such as “/” for the 

division et cetera. As far as I know, the theories of probability omit the axiomatization of mathematics, and I follow this 

procedure.  

 

 7.8.1.  The symbol “-“ occurring below does not mean ablation; it does mean subtraction. This notwithstanding 

such a symbol is not a homonymy bearer because the context overcomes any ambiguity (where “-” connects numbers, it 

expresses subtraction, where “-“ connects pieces of information, it expresses ablation).  

 

 7.8.2.  Since µk(h) is represented in  by the k&h-virgin field, the admissibility of the three axioms for µ is 

diagrammatically immediate. For instance AX8 states that if the k&h-shaded field is not the whole circle, the respective 

virgin field is not null. Anyhow the diagrammatic interpretation of some theorems is proposed below. 

 

 7.9.  Contrary to the already listed theorems, indicated by “Theor”, the µ-theorems (that is the theorems 

depending also on the non-logical axioms AX8, AX9 and AX10 will be indicated by “THEOR” in order to facilitate 

immediate references. The formal discriminating factor between Theors and THEORS, obviously, is the absence or 

presence of “µ”. 

 

THEOR1 µk(k&h) = µk(h) = µk&h(k&h)= µk&h(h) 

Proof AX10:  µk(k&h) = µk&k(h)= µk(h)  

and so on. 

 Of course a derivation like 

 µk(h)=µk&h(h)=µk&h(k&h)= µh(k&h)= µh(k) 

is illegitimate because presupposing that the sufficiency condition (§6.4.2) is satisfied by µk(h) does not imply that such 

a condition is satisfied by µh(k) too (and actually, in general, it is not). 

 

THEOR2 µk(~k) = 0. 

Proof.  AX9: µk(k) + µk(~k) = µk(k). 

 

THEOR3 µk&h1(h2)= µk&h2(h1). 

 

THEOR4 

 µk(h1&h2) + µk(h1&~h2) = µk(h1). 
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Proof AX9 and THEOR1:   

µk&h1(h2) + µk&h1(~h2) = µk&h1(k&h1) ) = µk(h1). 

Equivalent formulation: THEOR4’   

µk(h1&h2) = µk(h1) - µk&h1(~h2) 

THEOR4 shows that, given a k, increasing a hypothesis decreases its k-measure.  

 

THEOR5 µk(h&~h) = 0 

Proof  THEOR4 and Theor15:  

µk(h&~h) = µk(h) - µk&h(~~h) =µk(h) - µk(h). 

Equivalent formulations:  THEOR5’ µk(⊥)=0 

THEOR5” µk&h(~h) = 0. 

 Diagrammatic interpretation. Since the representation of two opposite pieces of information shades the whole 

circle, its virgin field, quite independently of the statute, is null. 

 

THEOR6 µk(Ø)=µk(k). 

Proof Ø=~⊥. AX9: µk(Ø)+µk(⊥) = µk(k). THEOR5’: µk(⊥)=0. 

 

THEOR7 If (µk(h)=0) then (k&h=⊥). 

Proof  Modus Tollens on AX8. 

 

THEOR8 If (k&h=⊥) then (µk(h)=0). 

Until now k=⊥ has only been a particular case, since THEOR8 shows that an incoherent statute entails a null measure 

for any hypothesis. In §7.13 this point will be deepened. 

 

THEOR9 If (k⊃h) then (µk(h)=µk(k)). 

Proof Protasis: k&h=k. Substitution: µk(k&h) = µk(k). THEOR1: µk(k&h) = µk(h) 

Diagrammatic interpretation: if the shaded field of k includes the whole shaded field of h, the virgin field of 

k&h is the virgin field of k 

 

THEOR10 0 ≤ µk(h) ≤ µk(k). 

Proof AX8 and THEOR5’ as for 0 ≤ µk(h); therefore (AX9) µk(h) ≤ µk(k) 

Diagrammatic interpretation: the k&h-virgin field cannot be greater than the k–virgin field. 

 

THEOR11 µk(h1&h2) ≤ µk(h2). 

 

THEOR12 If µk(h1&h2)= µk(h1) then µk(k&~ (h1&~h2)) = µk(k). 

Proof If µK(h1&h2)=µK(h1) then µK(h1&~h2)=0 by THEOR4, ergo µk(~(h1&¬h2))=µk (k) by AX9. 

 THEOR12 is the µ–correspondent of the Deduction Theorem. 

 

THEOR13 If (µk(h) = µk(k)) then (k⊃ h))  

Proof AX9:  µk(~h)=0. THEOR7:  k&~h =⊥. Theor11, k&h =k. 

 

THEOR14 (~(k⊃h)) ⊃ (µk(h) < µk(k)). 

Proof Modus Tollens on THEOR13, and THEOR9. 

 Diagrammatical interpretation. If the representation of h shades some k-virgin sector, the k&h-virgin field is 

less than the k-virgin one. 

 

 7.10.  The argument proposed in §6.10 can be re-proposed here. Since (AX9) 

(7.vii)  µk(~h) = µk(k) -  µk(h)  

and (THEOR4’) 

(7.viii)  µk(h1&h2) = µk(h1) - µk&h1(~h2) 

give us the measures of negations and conjunctions, and since any propositional connective can be formulated in terms 

of negations and conjunctions, we can derive from (7.vii) and (7.viii) the measure of any piece of information adduced 

by a proper formula of the propositional calculus. Let me enter into some (useful) detail.  

 

 7.10.1.  The three disjunctions informally introduced in §6.10 can be formally introduced by  

(ix)   (h1∨h2∨…∨hn) = (~(~h1&~h2&…&~hn)) 

for the inclusive disjunction OR, by 
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 (h1| h2|...| hn) = … 

     =  (~(h1&h2) & ~(h1&h3) & ... & ~(h1&hn) & & ~(h2&h3) &…& ~(h2&hn) & ... & ~(hn-1&hn)) 

for the exclusive disjunction NAND, and by 

 (h1↓ h2↓…↓ hn)=((h1∨h2∨...∨hn) & (h1| h2|...| hn)) 

for the partitive disjunction XOR. The last disjunction is called “partitive” because an n-uple h1.... hn constitutes a 

proper partition of the k-compatible eventualities iff the two conditions 

          (k&~h1&~h2&....&~hn) =⊥ 

(stating that h1.... hn are inclusively disjoined) and 

 (~ (hi= hj)) ⊃ (k&hi&hj=⊥) 

(stating that h1.... hn are exclusively disjoined) are satisfied.  

 Accordingly “↓”could almost be read as a synthesis of “∨” and “|”. 

 

 7.10.2.  As for the measures of the disjunctions I limit myself to the following theorems. 

 

THEOR15 µk(h1∨h2) = µk(h1) + µk(h2) - µk(h1&h2)  

Proof By (7.vii) and AX9, 

 µk(h1∨h2) =µk(~(~h1&~h2)) = µk(k) - µk(~h1&~h2)  

     = µk(k) - µk(~h1) + µk&¬h1(~~h2)  

     = µk(h1) + µk(h2&~h1) 

      = µk (h1) + µk(h2) - µk(h1&h2) 

 

THEOR16   µk(h1| h2)= µk(~h1)+ µk&h1(~h2) 

Proof µk(h1| h2)= µk(~(h1& h2) = µk(k)- µk(h1&h2). Then THEOR4 and AX9. 

 

THEOR17 µk(h1↓ h2) =  µk(h1&~h2) + µk(h2&~h1) 

Proof µk(h1↓ h2) = µk((h1∨h2) & (h1|h2)) = µk(h1∨h2) - µk&(h1∨h2)(~  h1| h2)) 

   = µk(h1∨h2) - µk&(h1∨h2)(h1&h2) 

   = µk(h
1
) + µk&h2(~h1) - µk&(h1∨h2)(h1) + µk&(h1∨h2)&h1(¬h2) 

   = µk(h1) + µk&h2(~h1) - µk(h1&(h1∨h2)) + µk&(h1∨h2)&h1(~h2) 

 But, since h1⊃(h1∨ h2), µ(h1&(h1∨h2)) = µk(h1) and µk&(h1∨h2)&h1(~h2) = µk&h1(~h2),  

 ergo  µk(h1↓ h2) = µk&h2(~h1) +µk&h1(~h2) = µk (h1&~h2) + µk(h2&~h1) 

Equivalent formulation:  

THEOR17’   µk(h1↓ h2) =  µk(h1)-µk(h1&h2)+µk(h2)- µk(h1&h2) 

 

THEOR18  µk(h1↓ h2↓…↓ hn) =  µK(h1&~h2&...&~hn) + 

+ µk(h2&~h1&...&~hn) + ...+ 

+  µk(hn&~h1&~h2&….&~hn-1) 

 

THEOR19    If (k=(h1↓ h2↓…↓ hn)), then 

  then µK(h1↓ h2↓…↓ hn) =  µk(h1) +  µk(h2) + ... + µk(hn)  (Addictiveness) 

Proof.  If h1... hn are a proper partition of k 

 h1 = (~h2&~h3&...&~hn) 

 h2 = (~h1&~h3&...&~hn) 

and so on, therefore  

 µk(h1&~h2&...&~hn) = µk(h1)  

 µk(h2&~h1&...&~hn) + µk(h2) 

and so on; the addictiveness follows from THEOR18. 

 

 7.10.3.  A dilemma is a partitive disjunction between two (opposite) alternatives. Therefore, with reference to a 

dilemma (n=2, h2=~h1) 

(7.x)    µk(h1∨h2) = µk(h1| h2)  =  µk(h1↓ h2)  =  µk(h1) + µk(h2) = µk(k) 



 Logic of Information     p.42 

follows from THEOR15, THEOR 16 and THEOR17. Indeed (7.x) can shed light upon some poor uses of the various 

disjunctions. An example: 

 if h1∨ h2∨…∨ hn and hi entails ~hj for all i≠j, then... 

is a habitual expression meaning what can be advantageously meant by 

  If h1↓ h2↓…↓ hn, then... 

since the condition that hi entails ~hj for all i≠j is exactly the condition that the n inclusively disjoined pieces of 

information are also exclusively disjoined (an example in the formulation of THEOR33 below). 

 

 7.11.   The definition 

(7.xi)  (h1→h2) = ~( h1&~ h2) 

introduces the (obviously non-primitive) symbol “→” for the connections I call “pseudo-hypothetics” (pseudo-

hypothetics will be exhaustively analyzed in Chapter 14, specifically destined to conditionals). And 

 

THEOR20 µk(h1→h2) = µk(~h1) + µk(h1& h2) 

(whose proof follows plainly from (7.xi)) gives us the measure of pseudo-hypothetics. 

 

 7.12.  In §6.3.3 I affirmed that µ is strictly linked to the notion Waismann, Carnap and followers call 

“measure”. In fact by  

(7.xii)  P(h|k) = µk(h)/ µk(k) 

I define the probability of h given k. The main difference is that, contrary to them, conceiving the measure as an 

absolute or unconditional quantity, in my opinion, is an unsustainable thesis (§15.1.2).  

 Of course the real number that µ assigns to a h as to a k° depends also on the unity we choose for µ ; I will deal 

with this marginal aspect in §7.15. 

 

7.13.  On the grounds of (7.xii) ~(k=⊥) becomes a strict condition in order to avoid µk(k)=0, that is a null 

denominator. Informally I remark that actually the same notion of probability would be senseless when referred to an 

incoherent statute. 

 Although the main stream of the contemporary orthodoxy starts from a monadic (absolute, unconditional) 

probability and (either by a definition or by an axiom) introduces the dyadic (relative, conditional) probability as a ratio 

between two monadic ones, in my opinion no monadic probability can exist, since the probability of a hypothesis 

depends intrinsically on the statute the same hypothesis is referred to. And the same (7.xii) makes evident such a claim. 

 Yet I am far from criticizing the distinction between prior and posterior probabilities. Such a distinction is a 

correct and essential achievement focusing on the variations determined upon the respective probabilistic values by 

increments of information. I am claiming that the same notion of an absolute probability is even more insensate than the 

already criticized notion of an absolute measure, because P would result dyadic even if µ  were monadic. The trap, 

generally speaking, is that while an ‘unconditional’ probability deals with only one statute (the prior), a ‘conditional’ 

probability deals with two (the prior and the posterior); nevertheless this evident difference must be not mistaken for an 

untenable difference of valences. In both cases the function concerns two variables (hypothesis and statute), and only in 

the latter must two different values of the second variable be accounted for. Thus a sound formalization must always 

deal with a dyadic function P(h|k) and recognize that there are probability problems concerning single values of such a 

function, and probability problems concerning the two values corresponding to the prior and to the posterior statute 

(prior and posterior as for the increment of information, obviously). Symbolically: there are probability problems 

concerning 

(7.xiii)  P(h|k°) 

and probability problems concerning the relation between 

  P(h|k°&k’) 

and (7.xiii). 

 

 7.13.1.  Moreover, a purely dimensional consideration suggests that to define the conditional probability as a 

ratio between two absolute probabilities is a rather arrogant procedure. Its arrogance does not regard the legitimacy of 

defining the values of a dyadic function as a ratio between the values of two monadic functions; it does regard the 

legitimacy of identifying the thus defined dyadic function with the definiens one. I intend that while a definition like 

  B(x,y) = A(x)/A(y) 

is a formally unexceptionable procedure, a definition like 

  A(x,y) = A(x)/A(y) 

is at the very least an insidious one. A minute example. If A(x) is a monadic function assigning to every person x his/her 

wealth (computed, say, in US-dollars), the ratio A(x)/A(y) defines a new dyadic function whose values are no longer 

US-dollars, but pure numbers (for instance: since x is three times richer than y, the ratio between the wealth of x and the 

wealth of y is 3); therefore it would not be correct to use the same “A” to indicate this new function too. Of course the 

values of both conditional and unconditional probabilities are pure numbers, but this particularity might be only the 
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mask of a logical abuse: in fact a probability value and a ratio between two probability values continue being two 

heterogeneous entities, and this heterogeneity cannot at all mirror the real situation, as “probability” keeps a common 

meaning both in its ‘unconditional’ and in its ‘conditional’ applications.  

 

 7.13.2.  Perhaps someone might be tempted to object that the notion of monadic probability is not at all 

insensate since, for instance, when we roll a just purchased die, 1/6 is the absolute value of each outcome. 

 The reply is easy. This value is not absolute, it actually depends on the cognitive endowment implicitly 

transmitted by “(purchased) die”, since statistical elements suggest us to interpret the word as “perfectly balanced 

cube”. In fact, almost in their totality, the dice on sale are perfectly balanced cubes. But if the die has been purchased 

on line at www.Falsaria.com, renowned firm specialized in the construction of deceitful dice, the probability of the 

various outcomes can be assigned only on the ground of a statute partitioning the space of possibilities in some non-

uniform way. So 1/6 is only the conditional probability relative to a statistically privileged statute. 

 Dissembling the intrinsic relational nature of a quantity by implicit assumptions is an unsound yet frequent 

habit. For instance I am reading that the distance of Proxima Centauri is 4.2 light-years, but for sure my perfect 

understanding does not entail that the distance is a monadic notion, it simply means that it is a dyadic notion whose 

second term (our planet) is tacitly understood. And actually such elliptic ways of speaking are only fully legitimated 

where the context clearly privileges the second term. 

 

 7.14.  The above considerations show that a Kolmogorov-style axiomatization is not acceptable; in fact 

- it proposes the probability as a primitive notion 

- it starts from a monadic absolute probability 

- it grounds upon a set-theoretic approach whose exasperated extensionality and homonymy-blindness are quite unfit to 

account for our very gnosiology, often  led by intensional processes. 

 

 7.15.  As for the unity of measure, 

(7.xiv)  µk (k)=1 

is the explicit choice complying with the implicit assumptions of the canonical approaches to the measure function. But 

I am afraid that (7.xiv) also represents the worst choice: in fact, under it, the same number expresses both µk(h) and 

P(h|k), a coincidence that seems to me an awkward help to possible mistakes between two quite distinct quantities. 

 Hajek (2003, §1) claims that the non-negativity and normalization axioms here resumed in 

(7.xv)  0 ≤ P(h|k) ≤ 1 

are largely matter of convention. I disagree: what is largely matter of convention is the choice of the µ-unit, but (7.xii) 

shows that this choice is irrelevant on the P-range, which always will respect (7.xv). In fact, while both µk(h)<0 and 

µk(h)>µk(k) are incoherent values, both µk(h)=0 and a µk(h)=µk(k) are exactly the coherent values accounting for the 

two border cases (of a h respectively k-incompatible and k-implied). 

 

 7.16.  The well known probability theorems are derivable by the simple application of (7.xii) to the respective 

axioms and theorems for µ. In particular 

 

THEOR21 P(h|k) + P(~h|k) = 1 

follows directly from AX9, 

 

THEOR22 0≤P(h|k)≤1 

follows directly from THEOR9, 

 

THEOR23 If h1&h2=⊥ then  P(h1∨ h2|k)=P(h1|k)+P(h2|k) 

follows directly from THEOR15. 

 Finally, in order to adequate my formulae to the current ones, let me use “e” as a new variable ranging over 

‘evidences’, that is on acquirements increasing a basic statute k°): 

 

THEOR24     P(h1|k°&e) = P(h1&e|k°) / P(e|k°)  

Proof.   To substitute k with k°&e in (7.xii), to divide numerator and denominator by µk°(k°) and to simplify. 

 These four theorems express in dyadic notation the four axioms upon which the usual theories are normally 

based (Howson and Urbach 2006, §2a); thence the usual theorems could be considered as already proved. Yet I carried 

out the task of deriving them again not only because of the new dyadic notation, but also because of the formal 

compromises affecting some current proofs. For example 

  AXIOM   P(t)=1  if t is a logical truth 

  THEOREM P(⊥)=0 

  Proof ~⊥ is a logical truth, hence... 

(ibidem, §2.b, (6)) seems to me a rather rough argument. No doubt that ~⊥ is a logical truth, but this means only that a 

theorization entailing such a conclusion is admissible. A formal proof must start from some axiomatic formula and 
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must transform it into the theoremic one with only the help of the inference rule(s); as such, maintaining the example, 

no proof can appeal to the notion of logical truth before its formal definition within the system, and no expression can 

be assumed as a logical truth before its formal derivation. 

 

 7.16.1.  Other useful probability theorems are  

 

THEOR25 P(h1&h2|k°&e) =  P(h1|k°&e)P(h2|k°&e&h1) 

Proof P(h1& h2|k°&e) = µk°&e(h1&h2) / µk°&e(k°&e) 

      = (µk°&e(h1&h2)/µk°&e(h1))(µk°&e(h1)/µk°&e(k°&e)) 

       = (µk°&e&h1(h2)/ µk°&e&h1(k°&e&h1))(µk°&e(h1)/ µk°&e(k°&e)) 

       = P(h1|k°&e)P(h2|k°&e&h1) 

 

COROLLARY 25 P(h1&h2|k) =  P(h1|k)P(h2|k& h1) 

 

THEOR26 P(h1∨ h2|k) = P(h1|k) + P(h2|k) – P((h1&h2)|k) 

Proof   THEOR15 and (7.xii) 

 

THEOR27  If (k=(h1↓ h2↓...↓ hn)) then  P(h1↓ h2↓...↓ hn|k) = P(h1|k) + P(h2|k) +...+ P(hn|k) = 1 

Proof THEOR19 and (7.xii). 

 

THEOR28  

If (~ (k&h1=⊥) & (h1⊃ h2) & µk(h2)< µk(k)) then  

then P(h1|k&h2)>P(h1|k) 

Proof  AX6: µk(h1)>0; P(h1|k&h2)= µk&2(h1) / µk&h2(k&h2) = µk(h1&h2)/ µk(h2) = 

  = µk(h1)/µk(h2) > µk(h1)/µk(k). 

THEOR28 is a milestone along the way to inductive inference, since it states that if a coherent h1 entails a consequence 

h2 not k-entailed then the acquirement of h2 increases the probability of (validates) h1 given k. 

 

THEOR29 

If (P(h1&h2|k)=1), then (P(h1|k)=1) 

Proof From THEOR26 and THEOR22.  

 

THEOR30 

If (P(h1|k)=0), then (P(h1&h2|k)=0) 

 

THEOR31  

((µk°(k°)= Σj µk°(hj)) ⊃ (µk°&e(k°&e)= Σj µk°&e(hj)) 

(a proper partition of k° is also a proper partition of k°&e) 

Proof  From THEOR19 (k° = h1↓ h2↓…↓ hn) ⊃ (µk°(k°)= Σj µk°(hj)) 

 

THEOR32 (k°= h1↓ h2↓…↓ hn) ⊃ (ΣiP(hj|k°&e)=1) 

 

THEOR33  

(k° = h1↓ h2↓…↓ hn) ⊃  

⊃ (P(hj|k°&e) =  ((P(hj|k°)P(e|k°&hj)) / (Σj(P(hj|k°)P(e|k°&hj))) 

(THEOR33 is Bayes’s Theorem in its complete formulation). 

  


